Loading...
HomeMy WebLinkAbout99-008 Nextel Antennas '- fiLE COpy February 26, 1999 Nextel Communications Attn.: Nathan Ward 9401 James Avenue S. Suite 180 Bloorr.rington,~ 55431 RE: Antenna at Prior Lake High School Dear Mr. Ward, On February 23, 1999 you presented the City with specifications related to the mounting of antenna on an existing floodlight pole located at Prior Lake High School. Under our current Zoning Ordinance, the proposed antenna is considered to be utility equipment, and thus a building permit is not necessary. The proposed antenna conforms to the requirements of the Zoning Ordinance as the height of the poles will not be altered and the utility closet will not have a foundation or footings and is therefore not a structure. You should be aware the City Council adopted a new Zoning Ordinance effective May 1, 1999. After May 1, 1999, all towers and antenna will require a Conditional Use Permit. Therefore, you must install the antenna prior to May 1, 1999 otherwise a Conditional Use Permit will be required. Please call me if you have any questions. Sincerely, (1"MA~vi ~1'7ICVJ ~~~ar Planner cc: DRC Members ~:\99F.lLES\99SUBJEC\99-008\APPL TR.DOC 16200 Eagle Creek Ave. S.E., Prior Lake, Minnesota 55372-1714 / Ph. (612) 447-4230 / Fax (612) 447-4245 AN EQUAL OPPORTUNITY EMPLOYER MEMORANDUM TO: Mike Whittington FROM: Bob Hutchins, Building Official DATE: June 20, 2006 RE: Prior Lake High School Floodlight Poles Enclosed is the stress analysis for the Prior Lake High School Floodlight Poles as requested. Please remit $7.00 to the City of Prior Lake. (28 copies @ 25 cents per copy.) _I February 17, 1999 Chuck Nelson Nextel Communications, Inc. 9401 James Avenue South Suite 180 Bloomington, MN 55431 RE: Prior Lake High School Floodlight Poles (MIN-127) Additional Antennas The existing Millerbemd Mfg. Co. 16-80FPI2-2 Floodlight Poles at Prior Lake High School (MIN-127) meet or exceed the structural requirements to carry (12) floodlights and the additional (2) DB801 Antennas mounted on a floodlight basket. This is for a 80 MPH wind w/1.3 gust factor and a 1/2" radial ice loading. Sincerely, ~~~ Wade Linnertz, P.E. t, n~reDY certify that this plan, specr ftcatfon, or ,report was prepared by me or under my, dIrect supervision and that , am a duly RegIstered Professional Engineer under the laws of the ~te of Minnesota. Date ~)I~~istmt~4741 MILLERBERND MANUFACTURING COMPANY · PO. BOX 98 . WINS TED, MINNESOTA 55395 PHONE (320) 485-2111 · FAX (320) 485-4420 -STRESS ANALYSIS- NEXTEL - PRIOR LAKE HIGH SCHOOL - MIN 127 35 MPH AASHTO - 1994 WITH 1.3 GUST FACTOR 16-80FP12-2/2MA MILLERBERND MANUFACTURING CO. WINSTED, MN. WILL QUAST ENGINEERING DEPARTMENT FILE: FP-XTRA 2-12-99 . this plan, speCl , hereOy certIfy mat re ared by me or fication, or ~eport w~~Vi~iO~ and that I am under my dIrect sup . I Engineer under a duly Registered prote~~~~~a of Minnesota. the laws of the 24741_ - H 1 80' -1 G 70.5' 69' F 1 59' E -t 49' D 1 41.8' 16-80FP12-2/2MA FLOODLIGHT STANDARD c I 29' B I 14' (12) LIGHTS EA AT 2.8 SQ FT 8c 50 LB BASKET 15.1 SQ FT 470 LB (2) ANTENNAS EA AT 3.25 SQ FT 8c 35 LB 3/16 X 14.7 X 7.5 X 40'-0' 1/4 X 21.4 X 13.88 X 41'-10' A 80FP12-2 -SECTION PROJECTED AREA, DISTANCE & WEIGHT- PROJ AREA=(TOP DAC + BOT DAC)/24*L CENTROID=(2*TOP DAC + BOT DAC)/(TOP DAC + BOT DAC)*L/3 WEIGHT=PROJ. AREA * 3.12144 * LB/FT2 SECTION TOP DAC BOT DAC t LENGTH PROJ AREA CENTROID WEIGHT G1-H 7.5 8.5 .1875 5.7 3.8 2.8 G-H 7.5 9.5 .1875 11 7.8 5.3 186 F1-G 9.5 10.4 .1875 5.1 4.3 2.5 F-G 9.5 11. 3 .1875 10 8.7 4.9 207 E1-F 11. 3 12.2 .1875 5.1 5 2.5 E-F 11.3 13.1 .1875 10 10.2 4.9 243 D1-E 13.1 13.8 .1875 3.7 4.1 1.8 D-E 13.1 14.4 .1875 7.2 8.3 3.5 197 C1-D 14.4 15.1 .25 6.5 8 3.2 C-D 14.4 16.2 .25 12.8 16.3 6.3 569 -wt. of slipjoint added to above wt.- B1-C 16.2 17.5 .25 7.7 10.8 3.8 B-C 16.2 18.8 .25 15 21. 9 7.3 696 A1-B 18.8 20.2 .25 7.2 11. 6 3.5 A-B 18.8 21. 4 .25 14 23.4 6.8 747 -DRAG COEFFICIENTS- (HEXDECAGONAL) Table 1.2.5C PER 1988 REVISIONS OF AASHTO - 1985 Vds32 32<Vd<64 Vd~64 Osr<0.26 1.10 1.37+1.08r-Vd/119-Vdr/29.7 0.83-1.08r r~0.26 1.10 0.55+(64-Vd)/58.18) 0.55 d=TD+BD/24 V=Wind Velocity r=Ratio of the corner radius to the radius of the inscribed circle. SECTION Vd COR. RAD. r Cd G-H 24.79 1. 75 .42 1.1 F-G 30.33 1. 75 .34 1.1 E-F 35.58 1. 75 .29 1. 04 D-E 40.1 1. 75 .26 .96 C-D 44.63 2 .27 .88 B-C 51.04 2 .23 .79 A-B 58.62 2 .2 .7 -SECTION PROPERTIES- 16-SIDED POLES Table 1.3.1B(2) R=MEAN RADIUS=(.98078D-t)/2 A=METAL AREA=6.37Rt S=SECTION MODULUS=3.22R2t I=MOMENT OF INERTIA=3.22R^3*t b=WIDTH ONE FLAT=.19509D SECTION Dac t R A S I b bit G1 8.5 .1875 4.07 4.87 10.02 40.84 1. 66 8.84 G 9.5 .1875 4.56 5.45 12.58 57.43 1. 85 9.88 F1 10.4 .1875 5.01 5.98 15.13 75.75 2.03 10.82 F 11.3 .1875 5.45 6.51 17.92 97.61 2.2 11. 76 E1 12.2 .1875 5.89 7.03 20.94 123.31 2.38 12.69 E 13.1 .1875 6.33 7.56 24.19 153.16 2.56 13.63 D1 13.8 .1875 6.67 7.97 26.89 179.45 2.69 14.36 D 14.4 .1875 6.97 8.32 29.31 204.25 2.81 14.98 C1 15.1 .25 7.28 11.59 42.66 310.58 2.95 11.78 C 16.2 .25 7.82 12.45 49.22 384.86 3.16 12.64 B1 17.5 .25 8.46 13.47 57.57 486.88 3.41 13.66 B 18.8 .25 9.09 14.48 66.58 605.49 3.67 14.67 Al 20.2 .25 9.78 15.58 77.01 753.23 3.94 15.76 A 21.4 .25 10.37 16.51 86.56 897.53 4.17 16.7 -ALLOWABLE STRESS- Table 1. 4 .1B (1) BENDING COMPACT TUBE (POLYGONAL): b/t56000/IFy HEXDECAGONAL: Fb= .66Fy(kp)/1.27*1.4= 46200 PSI: Fy= 50 KS! BENDING NON-COMPACT TUBE(POLYGONAL) :6000/IFy<b/t57500/IFy Fb=. 52Fy [5 (l-Kp) [/FY/7500 (b/t) -0.8] +Kp] *1.4 :b/t>7500/IFy Fb=.52Fy[1-/(/Fy/7500(b/t)-1)]*1.4 Fb= 46200 PSI AT SECTION G Fb= 46200 PSI AT SECTION F Fb= 46200 PSI AT SECTION E Fb= 46200 PSI AT SECTION D Fb= 46200 PSI AT SECTION C Fb= 46200 PSI AT SECTION B Fb= 46200 PSI AT SECTION A SHEAR (POLYGONAL): b/t512000/IFy Fv= .33Fy*1.4= 23100 PSI -WIND BENDING MOMENTS- Pa=WIND PRESSURE (TABLE 1.2. 5A) Cd=DRAG COEFFICIENT (TABLE 1.2. 5C) Vs=TRANSVERSE SHEAR=PROJ AREA *Pa*Cd Mbw=WIND BENDING MOMENT=Vs*MOMENT ARM LOCATION PROJ AREA Pa Cd Vs(LB) MOMENT ARM(FT) Mbw ( FT . LB . ) LIGHTS 33.6 6.6 1 222 4.2 932 BASKET 15.1 6.6 1.2 120 4.2 504 G1-H 3.8 6.6 1.1 28 2.8 78 TOTAL AT G1 370 1514 LIGHTS 33.6 6.6 1 222 9.25 2054 BASKET 15.1 6.6 1.2 120 9.25 1110 G-H 7.8 6.6 1.1 57 5.3 302 TOTAL AT G 399 3466 L: FROM G 399 3466 399 5.1 2035 ANTENNAS 6.5 6.6 1.1 47 6.6 311 F1-G 4.3 6.6 1.1 31 2.5 78 TOTAL AT F1 477 5890 L: FROM G 399 3466 399 10 3990 ANTENNAS 6.5 6.6 1.1 47 11. 5 541 F-G 8.7 6.6 1.1 63 4.9 309 TOTAL AT F 509 8306 L: FROM F 509 8306 509 5.1 2596 E1-F 5 6.6 1. 04 34 2.5 85 TOTAL AT E1 543 10987 L: FROM F 509 8306 509 10 5090 E-F 10.2 6.6 1.04 70 4.9 343 TOTAL AT E 579 13739 L: FROM E 579 13739 579 3.7 2142 D1-E 4.1 5.8 .96 23 1.8 41 TOTAL AT D1 602 15922 L: FROM E 579 13739 579 7.2 4169 D-E 8.3 5.8 .96 46 3.5 162 TOTAL AT D 625 18070 L: FROM D 625 18070 625 6.5 4063 C1-D 8 5.8 .88 41 3.2 131 TOTAL AT C1 666 22264 L: FROM D 625 18070 625 12.8 8000 C-D 16.3 5.8 .88 83 6.3 524 TOTAL AT C 708 26594 L: FROM C 708 26594 708 7.7 5452 B1-C 10.8 5.3 .79 45 3.8 171 TOTAL AT B1 753 32217 L: FROM C 708 26594 708 15 10620 B-C 21. 9 5.3 .79 92 7.3 669 TOTAL AT B 800 37883 L: FROM B 800 37883 800 7.2 5760 A1-B 11. 6 4.2 .7 34 3.5 119 TOTAL AT A1 834 43762 L: FROM B 800 37883 800 14 11200 A-B 23.4 4.2 .7 69 6.8 468 TOTAL AT A 869 49551 -POLE DEFLECTION- Ot/>=M/EI=d2y/dx2 t/>=dy/dx O=y A=12M/EI=ANGLE CHANGE B=A*12L+B(previous)=BEAM SLOPE D=B*12L+D(previous)=DEFLECTION SECTION MOMENT (ft .lb. ) I(in^4) G1-H 1514 34.32 G-G1 3466 49.14 F1-G 5890 66.59 F-F1 8306 86.68 E1-F 10987 110.46 E-E1 13739 138.24 D1-E 15922 166.3 D-D1 18070 191.85 C1-D 22264 289.63 C-C1 26594 347.72 B1-C 32217 435.87 B-B1 37883 546.19 A1-B 43762 679.36 A-A1 49551 825.38 B D (in) .001 .085 .003 .283 .005 .61 8.000001E-03 1.061 .01 1.685 .013 2.427 .014 3.065 .016 3.738 .018 5.18 .021 6.759 .024 8.949001 .026 11.246 .029 13.711 .031 16.204 rf, - As, N ('" U>j'7. 0:c o:rr." -SECONDARY MOMENTS, DEFLECTION- 8 DeFl ~ ..t O.1l.u70 DEFLECTION * WEIGHT Mbw2= SECONDARY MOMENT = LOCATION DEFLECTION (IN) LIGHTS .283 BASKET .283 G-H .198 TOTAL AT G L: FROM G .778 ANTENNAS .51865 F-G .451 TOTAL AT F L: FROM F 1.366 E-F .742 TOTAL AT E L: FROM E 1.311 D-E .673 TOTAL AT D L: FROM D L (ft. ) 5.7 5.3 5.1 4.9 5.1 4.9 3.7 3.5 6.5 6.3 7.7 7.3 7.2 6.8 I~. ~o<f WEIGHT (LB) Mbw2(FT. LB. ) 600 12 470 9 186 3 786 15 786 15 786 51 70 3 207 8 1063 77 1063 77 1063 121 243 15 1306 213 1306 213 1306 143 197 11 1503 367 1503 367 3.021 1503 378 C-D 1.579 569 75 TOTAL AT C 2072 820 L FROM C 2072 820 4.487 2072 775 B-C 2.297 696 133 TOTAL AT B 2768 1728 L FROM B 2768 1728 4.958 2768 1144 A-B 2.493 747 155 TOTAL AT A 3515 3027 -STRESSES- Table 1.3.1B(3) fb=BENDING STRESS=(1.38Mbw + 1.38Mbw2)/S)/1.38 fv=SHEAR STRESS=2.02Vs/A fa=AXIAL STRESS=WEIGHT/AREA CSR=COMBINED STRESS RATIO=fa/.6Fy+fb/Fb+(fv/Fv) 251 SECT Mbw Mbw2 Vs WEIGHT S A fb fv fa CSR G 3466 15 399 786 12.58 5.45 3321 148 144 .077 F 8306 77 509 1063 17.92 6.51 5614 158 163 .127 E 13739 213 579 1306 24.19 7.56 6921 155 173 .156 D 18070 367 625 1503 29.31 8.32 7548 152 181 .169 C 26594 820 708 2072 49.22 12.45 6684 115 166 .15 B 37883 1728 800 2768 66.58 14.48 7139 112 191 .161 A 49551 3027 869 3515 86.56 16.51 7289 106 213 .165 -ANCHOR BOLT STRESS- ( 8 ) 1.5 IN. DIA X 60 IN. LG ANCHOR BOLTS ON 25.5 IN. DIA. B.C. MATERIAL- ASTM A576 GR1541 MODIFIED - Fy=115 KSI MIN YIELD fab=AXIAL STRESS(PSI)=Mbw+Mbw2(AT A)/ 4 Ar A=BOLT ROOT AREA(IN2)=w/4(D-.9743/n)2 (1.3.4A) r=BOLT CIRCLE RADIUS(FT) fab= 52578 FT.LB./ 4 * 1.0625 FT.* 1.405 IN2= 8805 PSI Fab=ALLOWABLE STRESS=.5FY*1.4=80500 PSI (1.3.4D(2) -STRESS ANALYSIS- NEXTEL - PRIOR LAKE HIGH SCHOOL - MIN 127 35 MPH AASHTO - 1994 WITH 1.3 GUST FACTOR 16-80FP12-2/2MA MILLERBERND MANUFACTURING CO. WINSTED, MN. WILL QUAST ENGINEERING DEPARTMENT FILE: FP-XTRA 2-12-99 , hereDY certify that this plan, spect- fication or report was prepared by mt or under ~y direct supervision and. that am a duly Registered Professional Engm~er under the laws of the S te of Minnesota. H 1 80' 1 G 70.5' 69' F -t 59' E -t 49' D 1 41.8' c I 29' B I 14' 16-80FP12-2/2MA FLOODLIGHT STANDARD (12) LIGHTS EA AT 2.8 SQ FT 8. 50 LB BASKET 15.1 SQ FT 470 LB (2) ANTENNAS EA AT 3.25 SQ FT 8. 35 LB 3/16 X 14.7 X 7.5 X 40'-0' 1/4 X 21.4 X 13.88 X 41'-10' A 80FPl2-2 -SECTION PROJECTED AREA, DISTANCE & WEIGHT- PROJ AREA=(TOP DAC + BOT DAC)/24*L CENTROID=(2*TOP DAC + BOT DAC)/(TOP DAC + BOT DAC)*L/3 WEIGHT=PROJ. AREA * 3.12144 * LB/FT2 SECTION TOP DAC BOT DAC t LENGTH PROJ AREA CENTROID WEIGHT G1-H 7.5 8.5 .1875 5.7 3.8 2.8 G-H 7.5 9.5 .1875 11 7.8 5.3 186 F1-G 9.5 10.4 .1875 5.1 4.3 2.5 F-G 9.5 11. 3 .1875 10 8.7 4.9 207 E1-F 11. 3 12.2 .1875 5.1 5 2.5 E-F 11.3 13.1 .1875 10 10.2 4.9 243 D1-E 13.1 13.8 .1875 3.7 4.1 1.8 D-E 13.1 14.4 .1875 7.2 8.3 3.5 197 C1-D 14.4 15.1 .25 6.5 8 3.2 C-D 14.4 16.2 .25 12.8 16.3 6.3 569 -wt. of slipjoint added to above wt.- B1-C 16.2 17.5 .25 7.7 10.8 3.8 B-C 16.2 18.8 .25 15 21.9 7.3 696 A1-B 18.8 20.2 .25 7.2 11. 6 3.5 A-B 18.8 21.4 .25 14 23.4 6.8 747 -DRAG COEFFICIENTS- (HEXDECAGONAL) Table 1. 2. 5C PER 1988 REVISIONS OF AASHTO - 1985 Vd532 32<Vd<64 Vd~64 05r<0.26 1.10 1.37+1.08r-Vd/119-Vdr/29.7 0.83-1.08r r~0.26 1.10 0.55+(64-Vd)/58.18) 0.55 d=TD+BD/24 V=Wind Velocity r=Ratio of the corner radius to the radius of the inscribed circle. SECTION Vd COR. RAD. r Cd G-H 24.79 1.75 .42 1.1 F-G 30.33 1. 75 .34 1.1 E-F 35.58 1.75 .29 1. 04 D-E 40.1 1. 75 .26 .96 C-D 44.63 2 .27 .88 B-C 51.04 2 .23 .79 A-B 58.62 2 .2 .7 -SECTION PROPERTIES- 16-SIDED POLES Table 1. 3 . 1B ( 2 ) R=MEAN RADIUS = (.98078D-t)/2 A=METAL AREA=6.37Rt S=SECTION MODULUS=3.22R2t I=MOMENT OF INERTIA=3.22R^3*t b=WIDTH ONE FLAT=.19509D SECTION Dac t R A S I b bit Gl 8.5 .1875 4.07 4.87 10.02 40.84 1. 66 8.84 G 9.5 .1875 4.56 5.45 12.58 57.43 1. 85 9.88 Fl 10.4 .1875 5.01 5.98 15.13 75.75 2.03 10.82 F 11. 3 .1875 5.45 6.51 17.92 97.61 2.2 11.76 E1 12.2 .1875 5.89 7.03 20.94 123.31 2.38 12.69 E 13.1 .1875 6.33 7.56 24.19 153.16 2.56 13.63 D1 13.8 .1875 6.67 7.97 26.89 179.45 2.69 14.36 D 14.4 .1875 6.97 8.32 29.31 204.25 2.81 14.98 Cl 15.1 .25 7.28 11.59 42.66 310.58 2.95 11.78 C 16.2 .25 7.82 12.45 49.22 384.86 3.16 12.64 Bl 17.5 .25 8.46 13.47 57.57 486.88 3.41 13.66 B 18.8 .25 9.09 14.48 66.58 605.49 3.67 14.67 Al 20.2 .25 9.78 15.58 77.01 753.23 3.94 15.76 A 21.4 .25 10.37 16.51 86.56 897.53 4.17 16.7 -ALLOWABLE STRESS- Table 1.4.1B(1) BENDING COMPACT TUBE (POLYGONAL): b/t56000/IFy HEXDECAGONAL: Fb= .66Fy(kp)/1.27*1.4= 46200 PSI: Fy= 50 KSI BENDING NON-COMPACT TUBE (POLYGONAL) :6000/IFy<b/t57500/IFy Fb=. 52Fy [5 (l-Kp) [/Fy/7500 (b/t) -0.8] +Kp] *1. 4 : b/t>7500/ IFy Fb=.52Fy[1-/(/Fy/7500(b/t)-1)]*1.4 Fb= 46200 PSI AT SECTION G Fb= 46200 PSI AT SECTION F Fb= 46200 PSI AT SECTION E Fb= 46200 PSI AT SECTION D Fb= 46200 PSI AT SECTION C Fb= 46200 PSI AT SECTION B Fb= 46200 PSI AT SECTION A SHEAR (POLYGONAL): b/t512000/IFy Fv= .33Fy*1.4= 23100 PSI -WIND BENDING MOMENTS- Pa=WIND PRESSURE (TABLE 1.2.5A) Cd=DRAG COEFFICIENT (TABLE 1. 2. 5C) Vs=TRANSVERSE SHEAR=PROJ AREA *Pa*Cd Mbw=WIND BENDING MOMENT=Vs*MOMENT ARM LOCATION PROJ AREA Pa Cd Vs(LB) MOMENT ARM(FT) Mbw ( FT . LB . ) LIGHTS 33.6 6.6 1 222 4.2 932 BASKET 15.1 6.6 1.2 120 4.2 504 G1-H 3.8 6.6 1.1 28 2.8 78 TOTAL AT G1 370 1514 LIGHTS 33.6 6.6 1 222 9.25 2054 BASKET 15.1 6.6 1.2 120 9.25 1110 G-H 7.8 6.6 1.1 57 5.3 302 TOTAL AT G 399 3466 L: FROM G 399 3466 399 5.1 2035 ANTENNAS 6.5 6.6 1.1 47 6.6 311 F1-G 4.3 6.6 1.1 31 2.5 78 TOTAL AT F1 477 5890 L: FROM G 399 3466 399 10 3990 ANTENNAS 6.5 6.6 1.1 47 11.5 541 F-G 8.7 6.6 1.1 63 4.9 309 TOTAL AT F 509 8306 L: FROM F 509 8306 509 5.1 2596 E1-F 5 6.6 1. 04 34 2.5 85 TOTAL AT E1 543 10987 L: FROM F 509 8306 509 10 5090 E-F 10.2 6.6 1. 04 70 4.9 343 TOTAL AT E 579 13739 L: FROM E 579 13739 579 3.7 2142 D1-E 4.1 5.8 .96 23 1.8 41 TOTAL AT D1 602 15922 L: FROM E 579 13739 579 7.2 4169 D-E 8.3 5.8 .96 46 3.5 162 TOTAL AT D 625 18070 L: FROM D 625 18070 625 6.5 4063 C1-D 8 5.8 .88 41 3.2 131 TOTAL AT C1 666 22264 L: FROM D 625 18070 625 12.8 8000 C-D 16.3 5.8 .88 83 6.3 524 TOTAL AT C 708 26594 L FROM C 708 26594 708 7.7 5452 B1-C 10.8 5.3 .79 45 3.8 171 TOTAL AT B1 753 32217 L FROM C 708 26594 708 15 10620 B-C 21.9 5.3 .79 92 7.3 669 TOTAL AT B 800 37883 L FROM B 800 37883 800 7.2 5760 A1-B 11. 6 4.2 .7 34 3.5 119 TOTAL AT A1 834 43762 L FROM B 800 37883 800 14 11200 A-B 23.4 4.2 .7 69 6.8 468 TOTAL AT A 869 49551 -POLE DEFLECTION- Oq,=M/EI=d2y/dx2 q,=dy/dx O=y A=12M/EI=ANGLE CHANGE B=A*12L+B(previous)=BEAM SLOPE D=B*12L+D(previous)=DEFLECTION SECTION MOMENT (ft .lb.) I(in^4) G1-H 1514 34.32 G-G1 3466 49.14 F1-G 5890 66.59 F-F1 8306 86.68 E1-F 10987 110.46 E-E1 13739 138.24 D1-E 15922 166.3 D-D1 18070 191.85 C1-D 22264 289.63 C-C1 26594 347.72 B1-C 32217 435.87 B-B1 37883 546.19 A1-B 43762 679.36 A-AI 49551 825.38 B D (in) .001 .085 .003 .283 .005 .61 8.000001E-03 1.061 .01 1.685 .013 2.427 .014 3.065 .016 3.738 .018 5.18 .021 6.759 .024 8.949001 .026 11.246 .029 13.711 .031 16.204 rk AS/r,j ('.l-O~jr~ ~"0.1(''' -SECONDARY MOMENTS, DEFLECTION- g DeFL ~ .t O.q~70 DEFLECTION * WEIGHT Mbw2= SECONDARY MOMENT LOCATION DEFLECTION (IN) LIGHTS BASKET G-H .283 .283 .198 TOTAL AT G L FROM G .778 ANTENNAS .51865 F-G .451 TOTAL AT F L FROM F 1.366 E-F .742 TOTAL AT E L FROM E 1.311 D-E .673 TOTAL AT D L FROM D L (ft. ) 5.7 5.3 5.1 4.9 5.1 4.9 3.7 3.5 6.5 6.3 7.7 7.3 7.2 6.8 I~. ~o~ WEIGHT (LB) Mbw2(FT. LB. ) 600 12 470 9 186 3 786 15 786 15 786 51 70 3 207 8 1063 77 1063 77 1063 121 243 15 1306 213 1306 213 1306 143 197 11 1503 367 1503 367 3.021 1503 378 C-D 1. 579 569 75 TOTAL AT C 2072 820 L FROM C 2072 820 4.487 2072 775 B-C 2.297 696 133 TOTAL AT B 2768 1728 L FROM B 2768 1728 4.958 2768 1144 A-B 2.493 747 155 TOTAL AT A 3515 3027 ,. -STRESSES- Table 1.3.1B(3) fb=BENDING STRESS=(l.38Mbw + 1.38Mbw2)/S)/1.38 fv=SHEAR STRESS=2.02Vs/A fa=AXIAL STRESS=WEIGHT/AREA CSR=COMBINED STRESS RATIO=fa/.6Fy+fb/Fb+(fv/Fv) 2s1 SECT Mbw Mbw2 Vs WEIGHT S A fb fv fa CSR G 3466 15 399 786 12.58 5.45 3321 148 144 .077 F 8306 77 509 1063 17.92 6.51 5614 158 163 .127 E 13739 213 579 1306 24.19 7.56 6921 155 173 .156 D 18070 367 625 1503 29.31 8.32 7548 152 181 .169 C 26594 820 708 2072 49.22 12.45 6684 115 166 .15 B 37883 1728 800 2768 66.58 14.48 7139 112 191 .161 A 49551 3027 869 3515 86.56 16.51 7289 106 213 .165 -ANCHOR BOLT STRESS- ( 8 ) 1.5 IN. DIA X 60 IN. LG ANCHOR BOLTS ON 25.5 IN. DIA. B.C. MATERIAL- ASTM A576 GR1541 MODIFIED - Fy=115 KSI MIN YIELD fab=AXIAL STRESS (PSI) =Mbw+Mbw2 (AT A)/ 4 Ar A=BOLT ROOT AREA(IN2)=~/4(D-.9743/n) 2 r=BOLT CIRCLE RADIUS (FT) (1. 3. 4A) fab= 52578 FT.LB./ 4 * 1.0625 FT.* 1.405 IN2= 8805 PSI Fab=ALLOWABLE STRESS=.5Fy*1.4=80500 PSI (l.3.4D(2) -, -STRESS ANALYSIS- NEXTEL - PRIOR LAKE HIGH SCHOOL - MIN 127 80 MPH AASHTO - 1994 WITH 1.3 GUST FACTOR AND 1/2 INCH RADIAL ICE 16-80FP12-2/2MA MILLERBERND MANUFACTURING CO. WINSTED, MN. WILL QUAST ENGINEERING DEPARTMENT FILE: FP-XTRA 2-12-99 1 hereDY certify that this plan, specr fication, or report was prepared by me or under my direct supervision and, that I am a duly Registered Professional Engineer under the ~ of the ~te of Minnesota. O-dk..d~ Date Zit 1 Ie; 9 Registration No. 24741 H -1 80' -1 G 70,5' 69' F -1 59' E -1 49' D -1 41.8' c I 29' B I 14' 16-80FP12-2/2MA FLOODLIGHT STANDARD (12) LIGHTS EA AT 2,8 SQ FT 8c 50 LB A BASKET 15.1 SQ FT 470 LB (2) ANTENNAS EA AT 3,25 SQ FT 8c 35 LB 3/16 X 14,7 X 7,5 X 40'-0" 1/4 X 21.4 X 13,88 X 41'-10" BOFP12-2 -SECTION PROJECTED AREA, DISTANCE & WEIGHT- PROJ AREA=(TOP DAC + BOT DAC)/24*L CENTROID=(2*TOP DAC + BOT DAC)/(TOP DAC + BOT DAC)*L/3 WEIGHT=PROJ. AREA * 3.12144 * LB/FT2 SECTION TOP DAC BOT DAC t LENGTH PROJ AREA CENTROID WEIGHT G1-H 7.5 8.5 .1875 5.7 3.8 2.8 G-H 7.5 9.5 .1875 11 7.8 5.3 186 F1-G 9.5 10.4 .1875 5.1 4.3 2.5 F-G 9.5 11.3 .1875 10 8.7 4.9 207 E1-F 11. 3 12.2 .1875 5.1 5 2.5 E-F 11.3 13.1 .1875 10 10.2 4.9 243 D1-E 13.1 13.8 .1875 3.7 4.1 1.8 D-E 13.1 14.4 .1875 7.2 8.3 3.5 197 C1-D 14.4 15.1 .25 6.5 8 3.2 C-D 14.4 16.2 .25 12.8 16.3 6.3 569 -wt. of slipjoint added to above wt.- B1-C 16.2 17.5 .25 7.7 10.8 3.8 B-C 16.2 18.8 .25 15 21. 9 7.3 696 A1-B 18.8 20.2 .25 7.2 11. 6 3.5 A-B 18.8 21.4 .25 14 23.4 6.8 747 -DRAG COEFFICIENTS- (HEXDECAGONAL) Table 1. 2. 5C PER 1988 REVISIONS OF AASHTO - 1985 Vds32 32<Vd<64 Vd:264 Osr<0.26 1.10 1.37+1.08r-Vd/119-Vdr/29.7 0.83-1.08r r:20.26 1.10 0.55+(64-Vd)/58.18) 0.55 d=TD+BD/24 V=Wind Velocity r=Ratio of the corner radius to the radius of the inscribed circle. SECTION Vd COR. RAD. r Cd G-H 56.67 1.75 .42 .68 F-G 69.33 1. 75 .34 .55 E-F 81.33 1. 75 .29 .55 D-E 91.67 1.75 .26 .55 C-D 102 2 .27 .55 B-C 116.67 2 .23 .58 A-B 134 2 .2 .61 -SECTION PROPERTIES- 16-SIDED POLES Table 1.3.1B(2) R=MEAN RADIUS=(.98078D-t)/2 A=METAL AREA=6.37Rt S=SECTION MODULUS=3.22R2t I=MOMENT OF INERTIA=3.22R^3*t b=WIDTH ONE FLAT=.19509D SECTION Dac t R A S I b bit G1 8.5 .1875 4.07 4.87 10.02 40.84 1. 66 8.84 G 9.5 .1875 4.56 5.45 12.58 57.43 1. 85 9.88 F1 10.4 .1875 5.01 5.98 15.13 75.75 2.03 10.82 F 11. 3 .1875 5.45 6.51 17.92 97.61 2.2 11.76 E1 12.2 .1875 5.89 7.03 20.94 123.31 2.38 12.69 E 13.1 .1875 6.33 7.56 24.19 153.16 2.56 13.63 D1 13.8 .1875 6.67 7.97 26.89 179.45 2.69 14.36 D 14.4 .1875 6.97 8.32 29.31 204.25 2.81 14.98 C1 15.1 .25 7.28 11.59 42.66 310.58 2.95 11.78 C 16.2 .25 7.82 12.45 49.22 384.86 3.16 12.64 B1 17.5 .25 8.46 13.47 57.57 486.88 3.41 13.66 B 18.8 .25 9.09 14.48 66.58 605.49 3.67 14.67 A1 20.2 .25 9.78 15.58 77.01 753.23 3.94 15.76 A 21.4 .25 10.37 16.51 86.56 897.53 4.17 16.7 -ALLOWABLE STRESS- Table 1.4.1B(1) BENDING COMPACT TUBE (POLYGONAL): b/ts6000/IFy HEXDECAGONAL: Fb= .66Fy(kp)/1.27*1.4= 46200 PSI: Fy= 50 KSI BENDING NON-COMPACT TUBE(POLYGONAL) :6000/IFy<b/ts7500/IFy Fb=. 52Fy [5 (l-Kp) [/FY/7500 (b/t) -0.8] +Kp] *1. 4 :b/t>7500/IFy Fb=.52Fy[1-/(/Fy/7500(b/t)-1)]*1.4 Fb= 46200 PSI AT SECTION G Fb= 46200 PSI AT SECTION F Fb= 46200 PSI AT SECTION E Fb= 46200 PSI AT SECTION D Fb= 46200 PSI AT SECTION C Fb= 46200 PSI AT SECTION B Fb= 46200 PSI AT SECTION A SHEAR (POLYGONAL): b/ts12000/IFy Fv= .33Fy*1.4= 23100 PSI -WIND BENDING MOMENTS- Pa=WIND PRESSURE (TABLE 1. 2. 5A) Cd=DRAG COEFFICIENT (TABLE 1.2. 5C) Vs=TRANSVERSE SHEAR=PROJ AREA *Pa*Cd Mbw=WIND BENDING MOMENT=Vs*MOMENT ARM LOCATION PROJ AREA Pa Cd Vs(LB) MOMENT ARM (FT) Mbw ( FT . LB . ) LIGHTS 33.6 38 1 1277 4.2 5363 BASKET 15.1 38 1.2 689 4.2 2894 G1-H 3.8 38 .68 98 2.8 274 TOTAL AT G1 2064 8531 LIGHTS 33.6 38 1 1277 9.25 11812 BASKET 15.1 38 1.2 689 9.25 6373 G-H 7.8 38 .68 202 5.3 1071 TOTAL AT G 2168 19256 r; FROM G 2168 19256 2168 5.1 11057 ANTENNAS 6.5 38 1.1 272 6.6 1793 F1-G 4.3 38 .55 90 2.5 225 TOTAL AT F1 2530 32331 r; FROM G 2168 19256 2168 10 21680 ANTENNAS 6.5 38 1.1 272 11. 5 3128 F-G 8.7 38 .55 182 4.9 891 TOTAL AT F 2622 44955 r; FROM F 2622 44955 2622 5.1 13372 E1-F 5 38 .55 105 2.5 263 TOTAL AT E1 2727 58590 r; FROM F 2622 44955 2622 10 26220 E-F 10.2 38 .55 213 4.9 1045 TOTAL AT E 2835 72220 r; FROM E 2835 72220 2835 3.7 10490 D1-E 4.1 34 .55 77 1.8 139 TOTAL AT D1 2912 82849 r; FROM E 2835 72220 2835 7.2 20412 D-E 8.3 34 .55 155 3.5 543 TOTAL AT D 2990 93175 r; FROM D 2990 93175 2990 6.5 19435 C1-D 8 34 .55 150 3.2 480 TOTAL AT C1 3140 113090 r; FROM D 2990 93175 2990 12.8 38272 C-D 16.3 34 .55 305 6.3 1920 TOTAL AT C 3295 133367 L: FROM C 3295 133367 3295 7.7 25372 B1-C 10.8 31 .58 194 3.8 737 TOTAL AT B1 3489 159476 L: FROM C 3295 133367 3295 15 49425 B-C 21. 9 31 .58 394 7.3 2874 TOTAL AT B 3689 185666 L: FROM B 3689 185666 3689 7.2 26561 A1-B 11. 6 25 .61 177 3.5 620 TOTAL AT Al 3866 212847 L: FROM B 3689 185666 3689 14 51646 A-B 23.4 25 .61 357 6.8 2427 TOTAL AT A 4046 239739 -POLE DEFLECTION- Oq,=M/EI=d2y/dx2 q,=dy/dx O=y A=12M/EI=ANGLE CHANGE B=A*12L+B(previous)=BEAM SLOPE D=B*12L+D(previous)=DEFLECTION SECTION MOMENT (ft .lb. ) I(in^4) L (ft. ) B D (in) G1-H 8531 34.32 5.7 .007 .481 G-G1 19256 49.14 5.3 .017 1. 585 F1-G 32331 66.59 5.1 .03 3.399 F-F1 44955 86.68 4.9 .042 5.884 E1-F 58590 110.46 5.1 .056 9.293 E-E1 72220 138.24 4.9 6.800001E-02 13.315 D1-E 82849 166.3 3.7 .078 16.759 D-D1 93175 191.85 3.5 .086 20.371 C1-D 113090 289.63 6.5 .099 28.062 C-C1 133367 347.72 6.3 .111 36.423 B1-C 159476 435.87 7.7 .125 47.935 B-B1 185666 546.19 7.3 .137 59.929 A1-B 212847 679.36 7.2 .148 72.726 A-A1 239739 825.38 6.8 .158 85.612 -SECONDARY MOMENTS, DEFLECTION- Mbw2= SECONDARY MOMENT DEFLECTION * WEIGHT LOCATION DEFLECTION (IN) WEIGHT (LB) Mbw2(FT. LB. ) LIGHTS 1. 585 600 67 BASKET 1. 585 470 52 G-H 1.104 186 17 TOTAL AT G 786 84 r; FROM G 786 84 4.299 786 282 ANTENNAS 2.85775 70 17 F-G 2.485 207 43 TOTAL AT F 1063 426 r; FROM F 1063 426 7.431 1063 658 E-F 4.022 243 81 TOTAL AT E 1306 1165 r; FROM E 1306 1165 7.056 1306 768 D-E 3.612 197 59 TOTAL AT D 1503 1992 r; FROM D 1503 1992 16.052 1503 2011 C-D 8.361 569 396 TOTAL AT C 2072 4399 I: FROM C 2072 4399 23.506 2072 4059 B-C 11.994 696 696 TOTAL AT B 2768 9154 I: FROM B 2768 9154 25.683 2768 5924 A-B 12.886 747 802 TOTAL AT A 3515 15880 ,- -STRESSES- Table 1.3.1B(3) fb=BENDING STRESS=(1.38Mbw + 1.38Mbw2)/S)/1.38 fv=SHEAR STRESS=2.02Vs/A fa=AXIAL STRESS=WEIGHT/AREA CSR=COMBINED STRESS RATIO=fa/.6Fy+fb/Fb+(fv/Fv)2s1 SECT Mbw Mbw2 Vs WEIGHT S A fb fv fa CSR G 19256 84 2168 786 12.58 5.45 18448 804 144 .405 F 44955 426 2622 1063 17.92 6.51 30389 814 163 .664 E 72220 1165 2835 1306 24.19 7.56 36404 757 173 .795 D 93175 1992 2990 1503 29.31 8.32 38963 726 181 .85 C 133367 4399 3295 2072 49.22 12.45 33588 535 166 .733 B 185666 9154 3689 2768 66.58 14.48 35113 515 191 .767 A 239739 15880 4046 3515 86.56 16.51 35437 495 213 .775 -ANCHOR BOLT STRESS- ( 8 ) 1.5 IN. DIA X 60 IN. LG ANCHOR BOLTS ON 22.5 IN. DIA. B.C. MATERIAL- ASTM A576 GR1541 MODIFIED - Fy=115 KSI MIN YIELD fab=AXIAL STRESS(PSI)=Mbw+Mbw2(AT A)/ 4 Ar A=BOLT ROOT AREA(IN2)=~/4(D-.9743/n) 2 (1.3.4A) r=BOLT CIRCLE RADIUS (FT) fab= 255619 FT.LB./ 4 * .9375 FT.* 1.405 IN2= 48516 PSI Fab=ALLOWABLE STRESS=.5Fy*1.4=80500 PSI (1.3.4D(2)